
Chapter 11

Octave Translation
Invariance

Octave translation invariance is a symmetry that applies both to
musical scales and to individual notes within chords.

This invariance does not appear to satisfy any functional require-
ment. Rather, it appears to facilitate the efficient subtraction of
one pitch value from another to calculate the size of the interval
between them. In particular, the brain separates each pitch value
into a precise pitch value modulo octaves and an imprecise abso-
lute value, and performs subtraction separately on each of these
components.

11.1 Octave Translation Invariant Aspects of
Music

The following aspects of music are octave translation invariant:

• Chords and notes within chords can often be raised or lowered by an
octave without significantly affecting the musical quality of a piece of
music. The same applies for bass notes.

• All Western musical scales repeat themselves each octave. This rule
also applies to most non-Western musical scales.

• Home chords and home notes are octave translation invariant.
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Separation of Concerns

• Two musical notes separated by an octave, or a whole number of oc-
taves, have a similar perceived quality.

In all these cases we can suppose that the pitch value of musical notes is
represented by the pitch value modulo octaves, in the sense that information
about the position of the note within its octave is retained, but information
about which octave the note is in is thrown away.

Information about octaves is not thrown away in all places where pitch
information is processed: we know that the notes of a melody cannot be
individually raised or lowered by an octave. This relates to the contour of the
melody, which describes how the pitch goes up and down at different times.
And, subjectively, we know that, although two notes separated by an octave
sound partly the same, we can still tell that one of the notes is higher than
the other.

11.2 Separation of Concerns

A common mode of operation in the brain is the separation of information into
components. As previously mentioned, visual processing involves separation
of information into components of position, motion, depth and colour, so that
each component can be effectively processed by specialised processing areas.

We might suppose that something similar is going on with pitch: a sepa-
ration into a component modulo octaves and a component that retains octave
information. However, compared to other decompositions of information that
occur in the brain, this particular decomposition has a rather unusual math-
ematical nature: an apparently simple continuum of possible pitch values is
decomposed into a modulo value and a non-modulo value. What, if anything,
is the point of such a decomposition?

11.3 Digital versus Analogue

How does an electronic computer represent values that can be represented as
numbers from a continuum? Typically such values are represented as floating
point values. A floating point value consists of a mantissa, which is a finite
number of digits, and an exponent. In a computer the digits are normally
base 2, i.e. either 0 or 1, but it will not matter too much if we pretend that
they are actually decimal digits. The exponent can be thought of as telling
us where the decimal point is in relation to the digits.

Examples:

• “1.023e6” means 1.023 × 106 = 1,023,000. “1.023” is the mantissa and
“6” is the exponent.

• “2.54e-3” means 2.54×10−3 = 0.00254. “2.54” is the mantissa and “-3”
is the exponent.
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Octave Translation Invariance

This floating point representation represents numbers with a certain pre-
cision determined by the number of digits. The range of values for the ex-
ponent allows for very small and very large numbers to be represented: the
programmer of the computer can usually choose a standard floating point
format which can represent all the numbers required to be represented and
processed in their program, to a sufficient degree of accuracy for the purposes
of the program.

The brain as computer must process perceptual values that, in software
running on an electronic computer, would normally be represented by num-
bers, but, as we have already noted, the constraints of natural evolutionary
design are not quite the same as those of human industrial design. In par-
ticular, the representation of numerical values in cortical maps is much more
analogue than occurs in digital computers.

Firstly, there is never any recognisable division between mantissa and
exponent. If the range of values required to be represented does not include
very large or very small values, then there is no need for an exponent. In
the cases where there is a large dynamic range (as with the perception of
loudness), then the representation is effectively exponent only. This becomes
a representation on a logarithmic scale.

Secondly, numerical values are not represented as finite sequences of digits.
Most values are represented in terms of neurons that lie sequentially within a
map, such that each neuron represents some particular value. “In-between”
values are represented by means of population encoding.

Digital representations are very compact. High levels of precision can
be represented in a small number of components. For example, the level of
precision in human perception never exceeds 10000 values in a 1-dimensional
range of values, and 4 decimal digits would be enough to store a value from
a set of 10000 possible values.

In the case of pitch perception, there are about 10 octaves in the range
of human hearing. Accuracy of pitch discrimination in those portions of the
range with the most sensitivity (about 1000Hz to 4000Hz) is about 0.3%, or
1/240 of an octave. If this level of discrimination applied over the full range
of hearing, we would be able to discriminate 2400 different pitch values. But
the level of discrimination is reduced somewhat for higher and lower pitch
levels, and the maximum number of distinguishable pitch values is closer to
1400.

If, at some point in the brain, the set of possible pitch values was rep-
resented by 1 neuron per pitch value, then we would need 1400 neurons to
represent them. Now 1400 is not a large number of neurons. But the dif-
ficulty begins when we consider the need to calculate relative pitch. As we
have already noted, many aspects of the perception of music are pitch trans-
lation invariant. To achieve pitch translation invariance, it is necessary, by
one means or another, to compare different pitch values, and in particular to
calculate the interval between two different pitch values.
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Digital Representations in the Brain

A digital computer requires just 11 binary digits to represent a number
from 0 to 1400. The computer can subtract an 11 bit number from an 11
bit number to get another 11 bit number (we’ll ignore overflow here), using
a subtraction circuit containing some small multiple of 11 bits, probably 22
or 33.

How much circuitry will it take our brain’s analogue neural network to
do subtraction between these values? The näıve answer is: 1400 × 1400 =
1, 960, 000 ≈ 2, 000, 000. (I have rounded this to a simple 2,000,000, because
all the numbers here are very rough.) Why so many? We need this many
neurons because we need to wire up each pair of neurons representing a
pair of input values to an intermediate neuron representing that particular
subtraction problem, and then we need to connect each of these intermediate
neurons to the corresponding neuron representing the answer. In effect the
2,000,000 neurons constitute a giant subtraction table. (Figure 11.1 shows a
4 × 4 subtraction table that implements subtraction of pitch values from a
range of just 4 possible values, with 4 × 4 = 16 intermediate neurons and 7
output neurons.)

Now 2,000,000 is a non-trivial number of neurons. Perhaps not a large
number in terms of the brain’s total, but still large in terms of the calcula-
tion being performed. (There may also be a need for more than just one such
subtraction table. We have already determined the existence of two musi-
cal cortical maps that process consonant relations between pitch values—the
harmonic cortical map and the home chord cortical map—and each such map
would require its own subtraction table.)

Even if providing 2,000,000 neurons is not a problem, correctly developing
all the connections between the inputs and outputs and calibrating them
might consume excessive resources. (More on the subject of calibration in
the next chapter.)

In computer science terminology, we have O(N2) complexity1 for a prob-
lem that really only requires O(logN) amount of circuitry.

11.4 Digital Representations in the Brain

So, assuming that the required size of one or more subtraction tables for
pitch values might impose a significant cost on the individual, can some of
this complexity be reduced by using the digital solution?

To explore this possibility, I am going to analyse the problem of how to
represent a series of values from 0 to 99 by separating each value into a first
decimal digit and a second decimal digit.

We can assume that the original value would be represented by 100 neu-
rons. The separate digit values would be represented by 10 neurons for the

1Reminder: complexity refers to usage of resources, not how complicated the problem
is.
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Figure 11.1. A neural subtraction table for the problem Y − X. Each circle
represents one neuron. The white neurons are inputs representing values for X
and Y. The black neurons represent the answer, and each gray neuron represents
one subtraction problem. Population encoding allows the neural network to solve
problems involving “in-between” values.

first digit and 10 neurons for the second digit. We have reduced the required
circuitry from 100 neurons to just 20 neurons.

There is one basic problem with this simple separation, which is the gen-
eral imprecision of representation of values by individual neurons. As dis-
cussed when I explained population encoding, each neuron represents a
range of values, and each value is correspondingly represented by the activa-
tion of a range of neurons. This causes problems when we try to split the
value from 0 to 99 into two values each from the range 0 to 9.

Consider, for example, a value 39.5. In the 100 neuron representation, the
most active neurons will be those that maximally respond to 39 and 40, with
lesser activation of those neurons active for 38 and 41, and even less for 37
and 42, and so on. No problem here: we can easily reconstruct the value 39.5
from this pattern of activity.

But now consider the separation into two digits. In the first digit, there
will be neurons representing 3 and 4. Since 39.5 is in between the ranges of
numbers with 3 as a first digit and 4 as a first digit, we would expect these 2
neurons to be equally active. Still no problem.
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Split Representation of Pitch

Now consider the second digit. The most active neurons will be those for
0 and 9. This represents a value between X9 and Y 0, where Y is the next
digit after X .

The problems begin when we try to reconstruct the original full value.
The first digit is maybe 3 or 4, the second digit is maybe 9 or 0. This implies
that the reconstructed number might be 39 or 40 or 30 or 49. Now 39 and
40 are good estimates, but the values of 30 and 49 are completely spurious,
and nowhere near the real value.

One diagnosis of the cause of this problem is that the split of information
between the first digit and the second digit is an exact split, with no sharing
or overlap. This is fine in a digital computer, where the design relies on
discrete components that represent discrete values with 100% reliability, but
it doesn’t work in neural networks where information is represented in a fuzzy
manner shared between different components. If fuzzy information is to be
split so that the original fuzzy information can be reliable reconstructed, then
the splitting itself has to be fuzzy. This means that there has to be an overlap
between what the first digit represents and what the second digit represents.

One way to do this for the 100 value example is to have the second digit
be a number from 0 to 9 representing the original value modulo 10, as before,
but have the first digit be a number from 0 to 19, representing the number
of 5’s. So 39 is represented by “79”, and 40 is represented by “80”.

What happens when we split and reconstruct? The reconstructed number
becomes one of “70”, “79”, “80” or “89”. In this case we still have two valid
values, i.e. “79” and “80”, and two spurious values “70” and “89”. But this
time the spurious values are intrinsically invalid, and the system can be wired
to ignore them. For example, a first digit of 7 implies a number in the range
from 35 to 39, and none of these numbers ends in 0, so “70” is an invalid
number. Similarly a first digit of 8 implies a number in the range 40 to 45,
so “89” does not represent a valid number.

This overlap between what the first digit represents and what the second
digit represents introduces some redundancy, so there is less reduction in the
number of neurons required. We have 20 + 10 = 30 neurons, instead of 10 +
10 = 20 neurons, but this is still less than 100 neurons.

We can now calculate the reduction of the size of the subtraction tables
using the fuzzy split representation: ignoring the details of wrap-arounds and
overflows, the original representation requires 100×100 = 10000 neurons to do
subtraction, whereas the fuzzy split representation requires 20×20+10×10 =
400 + 100 = 500 neurons, which is considerably fewer.

11.5 Split Representation of Pitch

The previous analysis suggests that the representation of pitch information
is such that pitch values are split into two components:
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• A pitch value modulo octaves, which has maximum precision.

• An absolute pitch value which is less precise.

Exactly how imprecise is the imprecise absolute pitch value representa-
tion? There is no obvious way to measure this, because the combined effect
of the two representations is always equivalent to a representation of a sin-
gle precise pitch value. From our analysis we would expect that the average
error of the absolute pitch value representation is somewhat larger than the
average error in the representation of the pitch value modulo octaves (because
the absolute value representation is the imprecise first “digit”) and somewhat
smaller than an octave (because the split into two “digits” is fuzzy).

It is possible that neurological patients exist who have suffered some
type of localised brain damage, and who can be identified as having lost
the modulo-octaves representation of pitch. If these patients still have some
degree of pitch perception, then the accuracy of their pitch discrimination
could be an indicator of the accuracy of the absolute component of the split
pitch value.

It might be supposed that our ability to detect up and down motions in
pitch is tied to the absolute imprecise component. However, in 1964 Roger
Shepard published a paper “Circularity in Judgments of Relative Pitch”,
which described a sequence of tones in which the pitch value modulo octaves
rises forever. Such a sequence is indeed perceived as rising forever, even
though it is completely repetitive. The basic trick in constructing these tones
is that the only harmonics are those with frequencies which are multiples
of the fundamental frequency by powers of 2, i.e. 1, 2, 4, 8, 16 etc. Also,
the fundamental frequency is weak relative to the second harmonic. As a
result, the absolute frequency of the sound is ambiguous, even though its
value modulo octaves is unambiguous.

The implication of the perception of rising tones on these Shepard scales
is that if the perceived fundamental frequency of a pitch value is ambiguous,
small changes in the pitch value modulo octaves are preferentially interpreted
(by the brain) as corresponding to small changes in absolute pitch value.

If small intervals modulo octaves are unambiguous in their direction, then
we would expect larger intervals to be maximally ambiguous. The largest
possible interval modulo octaves is half an octave, i.e. 6 semitones, also known
as a tritone.

The tritone paradox refers to a phenomenon discovered by music psy-
chologist Diana Deutsch, which is that the ambiguity in perception of direc-
tion of tritone intervals between Shepard tones is a function of absolute pitch
modulo octaves, with the function being different for different individuals.2

For each listener there is a particular position in the scale where the direction
of a tritone interval is maximally unambiguous, and the ambiguity of other
tritone intervals is a function of how close the notes defining those intervals

2A Musical Paradox Diana Deutsch (Music Perception 1986)
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Split Representation of Pitch

are to the maximally unambiguous tritone. For example, a given listener
might have a maximally unambiguous tritone interval of F♯ to C such that
change in pitch going from F♯ to C was unambiguously perceived as going
upwards.

There are at least two possible interpretations of the observed pattern
of ambiguity. One is that the neural representation of pitch value modulo
octaves is circular, and that a particular direction in the brain is defined as
being “upwards”, for example as shown in Figure 11.2.
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Figure 11.2. Circular tritone model. Direction for small intervals is clockwise
(on the diagram) = upwards (perceived). Direction for tritones is upwards (on
the diagram) = upwards (perceived). The tritone interval F♯ to C is the least
ambiguous in its direction (definitely upwards); the interval A to D♯ is the most
ambiguous (it could be either up or down).

A second possible interpretation is that the neural representation of pitch
value modulo octaves is linear with overlap, and the maximally unambiguous
tritone interval is located at the centre of this map, so that it is the least
affected by ambiguous locations of neurons representing pitch values in the
overlap. This interpretation is shown in Figure 11.3.

The advantage of the overlap model is that it simultaneously models per-
ceived direction for both very small intervals and tritones. In the circular
model, tritone direction is modelled by a fixed direction, whereas direction
for small intervals is modelled by clockwise (or anticlockwise) motion around
the circle.
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Figure 11.3. Overlap tritone model. Direction for all intervals is rightwards
(on the diagram) = upwards (perceived). In this diagram only the interval
F♯ to C has an unambiguous interpretation: all the others have two possible
interpretations. This is a function of the size of the overlapped areas at the ends
(in this case from C♯ to F ). A variation on this theory is that greater priority
is given to direction perceived from intervals represented in the central area of
the map (as shown by the different shades of gray—darker means more weight
is given to arrows lying in that region). In the example shown, F♯ to C would
still be the most unambiguous upward tritone, and this would depend only on
the midpoint of this interval (A) being at the centre of the map, and would not
depend on how large the overlapped areas at the ends of the map were.

The other consideration making the linear overlap model more likely is
that all other known cortical maps representing one-dimensional values map
them in a linear fashion. In particular this applies to all known tonotopic3

cortical maps.

The location of the maximally unambiguous tritone interval appears to be
determined by the individual’s exposure to spoken language, as correlations
have been observed according to geographical location,4 and also between
mother and child.5 This relationship between exposure to speech and the
mechanics of octave translation invariance provides further evidence that oc-
tave translation invariance is relevant to speech perception (and not just to
music perception).

3Reminder: a tonotopic map correlates position in one direction with frequency or
pitch.

4The Tritone Paradox: An Influence of Language on Music Perception Diana Deutsch
(Music Perception 1991)

5Mothers and Their Children Hear a Musical Illusion in Strikingly Similar Ways Diana
Deutsch (Journal of the Acoustical Society of America 1996)
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11.6 Octaves and Consonant Intervals

As already mentioned in Chapter 9, when discussing the relationship between
invariances of pitch translation and octave translation, there is a correspon-
dence between octave translation invariance and the importance of consonant
intervals: all those aspects of music perception that depend strongly on con-
sonant intervals are also octave translation invariant.

The one aspect of pitch perception which is not octave translation invari-
ant, and which does not depend on perception of consonant intervals, is the
perception of the up and down motion of melodic contours.

The next chapter on calibration suggests an explanation for all these ob-
servations, and also explains why octaves and other consonant intervals are
so important in the first place.
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