Chapter 9

Symmetries

Symmetry turns out to be a very important concept in the anal-
ysis of music perception and its relationship to speech perception.
There are five or maybe six identifiable symmetries of music per-
ception. These are invariances under six corresponding types of
transformation: pitch translation, octave translation, time trans-
lation, time scaling, amplitude scaling and (possibly) pitch reflec-
tion. Different symmetries apply to different aspects of music.

Some of the symmetries are functional, in that they correspond
to required symmetries of perception. The other symmetries are
implementation symmetries: they reflect the internal mechanics
of speech and music perception.

9.1 Definition of Symmetry

As T developed my theory of music, based on the concept of perception of
musicality as an aspect of speech perception, I came to realise that there are
various symmetries of speech and music perception, and that these symme-
tries define very strong constraints on any theory that seeks to explain both
the mechanics and purpose of music perception.

Symmetry is an everyday concept that we use when talking about shapes
and patterns. For example, the human body has an approximate left-right
symmetry. We recognise other types of symmetry in shapes such as rectangles,
squares and circles, and we recognise repetitive types of symmetry such as
found in wallpaper patterns.

Informally we can explain that a shape or pattern is symmetric if the shape
or pattern is equal to itself when it is moved in some way. For example, a
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square is equal to itself if it is rotated 90 degrees. A circle is equal to itself if
it is rotated any number of degrees. Both shapes are equal to themselves if
they are picked up and turned over (in the case of a square it must be turned
over around one of 4 axes that go through the centre, in the case of the
circle we can turn it over around any axis that goes through the centre). The
wallpaper is equal to itself if it is shifted by the distance between repetitions
of the pattern (in the direction that the pattern repeats itself).

We can extend this informal intuition about what a symmetry is to give
a more formal mathematical definition of symmetry:

A symmetry is a set of transformations applied to a struc-
ture, such that the transformations preserve the properties of the
structure.

Generally it is also presumed that the transformations must be invert-
ible, i.e. for each transformation there is another transformation, called its
inverse, which reverses its effect.!

Considering our left-right symmetry example, the transformation that
preserves the structure is a reflection in the plane that divides the body down
the middle, which swaps left and right. The left-right reflection is its own
inverse.

We can formally define the other examples of symmetry already given, in
terms of their corresponding sets of transformations:

e A circle has circular symmetry. The set of transformations consists
of all possible rotations about the centre of the circle and all reflections
about lines that go through the centre of the circle.

e The transformations defining the symmetry of a square are: all rotations
that are multiples of 90 degrees, and all reflections about diagonals and
about lines that join the midpoints of opposite sides.

e Considering an infinitely large wallpaper with a pattern (not itself sym-
metrical) that repeats every 10cm going up or down and every 10cm
going left or right, the set of transformations for the wallpaper’s sym-
metry consists of translations of the form (n x 10cm,m x 10cm) for
arbitrary integers n and m.

All of these examples are geometrical symmetries. The sets of trans-
formations are subsets of the full set of transformations that defines the sym-
metry of geometry itself. We can think of the symmetry of geometry as being
represented by the transformations that preserve the properties of empty

1For most cases that we consider, if a transformation preserves the structure then the
transformation has to be invertible. Non-invertible transformations can only preserve struc-
ture if there is not enough structure to require the transformation to preserve the distinction
between different components of the structure.
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space—in particular the property defined by the distance between any two
points. If we restrict ourselves to a flat 2-dimensional geometry, this set of
transformations consists of:

e All translations, i.e. shifting all of space a certain distance in a certain
direction.

e All rotations, i.e. rotating all of space a certain angle (clockwise or
anticlockwise) about a certain point.

e All reflections, i.e. reflecting all of space about a certain line.

It is entirely possible to define symmetries that have no direct geometri-
cal interpretation. These are sometimes called abstract symmetries. For
example, consider the structure consisting of addition on the real numbers.?
This structure is preserved by any transformation that multiplies all the real
numbers by one number c. For example, if we transform the real numbers
by multiplying them all by 6.8 (so ¢ = 6.8), then the operation of addition is
preserved by this transformation, i.e. if z + y = 2z then 6.8z + 6.8y = 6.8z.
If we extend the structure to include multiplication of numbers, then the
symmetry no longer applies, because the structure of multiplication is not
preserved by the transformation: it is not necessarily true that z x y = 2
implies 6.8x x 6.8y = 6.8z.

Symmetry has turned out to be a very powerful concept in mathematics.
The Erlanger Programm was born out of recognition of the importance
of symmetry. The “program” was created by the German mathematician
Felix Klein, and emphasised the importance of studying the symmetries of
mathematical structures.

9.1.1 Symmetries of Physics

Symmetry also matters in the study of the real world. The study of the most
fundamental properties of reality is called physics, and it is in physics that
symmetry plays the most important role.

The mathematics of physical symmetries is not an easy subject, and the
more difficult parts of it do not have any direct bearing on understanding the
symmetries of music, but there are enough similarities that it is worthwhile
reviewing the role that symmetry plays in physics.

A dynamical physical system can be described by something called a La-
grangian. Noether’s theorem says that for every symmetry of the La-
grangian, there is a corresponding conservation law. The symmetries of
Lagrangians usually include the underlying symmetries of space and time,
and these lead to standard conservation laws as follows:

2The real numbers are those numbers that can be expressed as either finite or infinite
decimals, including both negative and positive numbers (and zero).

153



Symmetries

e Symmetry under translation in space implies conservation of momen-
tum.

e Symmetry under rotation in space implies conservation of angular mo-
mentum.

e Symmetry under translation in time implies conservation of energy.

There aren’t any Lagrangians or Noetherian theorems in the theory of
music, so I will not attempt to explain these concepts. But there is an illu-
minating parallel between symmetries as studied in physics and symmetries
as we are going to study them in music:

For every symmetry there is an important set of questions to ask.

In physics the main question is: What is the conservation law that cor-
responds to this symmetry? In studying music the questions derive from
biological considerations: What purpose does the symmetry have? and How
is the symmetry achieved?

Even though the analogy between physical symmetry and musical symme-
try is fairly abstract, a number of specific concepts that arise when considering
physical symmetries also apply to music:

e Symmetries in physics can be global or local. The examples given so
far are all global because they are defined over the full structure be-
ing transformed. A local symmetry is one consisting of some type
of transformation that can be defined pointwise, i.e. there is a trans-
formation that can be specified separately over each location within
the structure being transformed.® The choice of transformation at each
point makes the set of transformations that define a local symmetry
a very “large” set. An example of local symmetry does appear in our
analysis of musical symmetries.

e Symmetries can be partial. This means that a symmetry only applies
to part of a system. An example in physics is that of swapping protons
and neutrons (these are fundamental particles that make up the nu-
cleus of the atom). Swapping these two preserves aspects of the strong
force, but does not preserve the electromagnetic force. The elec-
tromagnetic force is not preserved by the swap because the proton has
electric charge, and the neutron doesn’t. But in situations where the
strong force dominates the evolution of a physical system, the symmetry
between neutron and proton can be considered a full symmetry.

e Symmetries can be approximate. An approximate symmetry is one
where the transformations only approximately preserve the structure

3 Although the transformation can be different at each point, it is usually required to be
a “smooth” function of position.
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being transformed.* Approximate symmetries of Lagrangians give rise
to approximate conservation laws. We will find that all musical sym-
metries are approximate to some degree. A special type of approximate
symmetry is one that is exact for an arbitrarily small transformation.
It will be the case for some musical symmetries that the symmetry is
close to exact for small transformations but becomes less exact for larger
transformations.® Unfortunately there does not seem to be any general
term for this type of symmetry, so I will coin my own term and call such
symmetries limited symmetries, to emphasise that the symmetry is
exact or close to exact over a limited range.

e There are broken symmetries in physics. This has to do with situ-
ations where the set of potential evolutionary histories of a dynamical
system has a certain symmetry, but any particular history must have
less symmetry. The classical example of this is a circular pencil with an
infinitely sharp point, balanced upright point downwards on an infinite
flat surface. The system has circular symmetry as long as the pencil
remains balanced upright. We know that the pencil is going to fall over.
When it falls over it has to fall over in some particular direction. And
when that happens, the system consisting of the pencil fallen down on
the surface no longer has circular symmetry; in fact the symmetry is
lost or “broken” the moment that the pencil starts to fall. (We will
encounter an example of broken symmetry in music when we look at
pitch reflection invariance.)

9.2 A Little More Mathematics

Before we consider the symmetries of music, I will define a few more mathe-
matical ideas about symmetry.

9.2.1 Discrete and Continuous

Looking at the examples already given in Section 9.1, we can see variations
in the number of transformations in a given symmetry. For example, in the
left-right reflection example, there is only one transformation, i.e. reflection
about the vertical line going through the centre. Actually every symmetry
also includes the identity transformation—this is the transformation that
does not change the structure—so we can say that the reflection symmetry
contains two transformations. The symmetry of a square is defined by a
set of eight transformations: four distinct rotations (including a rotation of

4There is some overlap between partial and approximate: a partial symmetry is
approximate in those situations where the things it doesn’t apply to have a “small” effect
on the system or structure that the symmetry applies to.

5For this notion to be well defined, the set of transformations has to have some notion
of size defined on it.
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zero degrees which is the identity) and four distinct reflections. This set
of transformations is discrete, because for any transformation there is no
sequence of transformations distinct from it that get closer and closer to it.
The set of transformations is also finite, because we can say how many there
are, i.e. eight.

The set of transformations of our wallpaper is discrete, but it is not finite,
because it includes the transformation (n x 10cm,m X 10cm) for arbitrary
integers n and m, and the set of integers is infinite.

The set of transformations for circular symmetry is not discrete; rather it
is continuous, because we can consider a rotation of x degrees for any real
number z. Given any two different rotations, there will always exist another
rotation that lies in between those two.

9.2.2 Generators

Our wallpaper symmetry example has an infinite set of transformations, but
we can generate all these transformations from just two transformations, for
example (10cm,0cm) and (Ocm, 10cm). These transformations from which
all transformations in a set can be generated are called generators. We
should note that the choice of generators is not necessarily unique, so being a
generator is not a specific property of a particular transformation in the set.
For the transformations that define the symmetry of a square, we can choose
a rotation of 90 degrees and any reflection as a set of two generators for the
full set of transformations.

The notion of generator can be extended to continuous symmetries in
terms of infinitesimal generators. “Infinitesimal” can be understood to
mean arbitrarily small. Thus we can define all rotations as being constructed
as multiples of some very small rotation. For example, every possible rotation
is approximately equal (with an error no greater than 0.0005 degrees) to a
multiple of 0.001 degrees.

9.2.3 Stronger and Weaker Symmetries

As the reader may already have noticed, the set of transformations for one
symmetry can be a subset of the transformations for another symmetry. We
call a symmetry with more transformations in it a stronger symmetry, and
one with fewer transformations a weaker symmetry. For example, the set
of eight transformations defining the symmetry of a square is a subset of
the transformations that define the symmetry of a circle that has the same
centre. The circular symmetry is stronger than the square symmetry. The
set of transformations for circular symmetry is in turn a subset of the set of
transformations for the symmetry of empty 2-dimensional space.

A general rule is that more structure implies weaker symmetry, unless the
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additional structure is symmetrical with regard to the existing symmetry.%
For example:

e We start with the symmetry of empty space, which is defined by the
set of transformations consisting of all possible translations, rotations
and reflections.

e We add a single point to the space. The set of transformations that
preserve this new structure is reduced to those transformations that
do not change the position of the point: this reduced set consists of
rotations about the point and reflections about the lines that go through
the point.

e We add a circle whose centre is the same point. As it happens this does
not alter the symmetry of the system, because the circle is symmetrical
under the same rotational and reflective transformations.

e We add a square whose centre is the same as the centre of the circle. The
set of transformations is now reduced to those eight transformations of
the discrete square symmetry.

e To the square we add arrows to each side that point clockwise: now the
structure has only discrete rotational symmetry, and the set of trans-
formations consists of rotations of 0 degrees, 90 degrees, 180 degrees
and 270 degrees clockwise.

e We add one point to the structure distinct from our first point: now the
system has no symmetry at all, and the set of transformations consists
only of the identity transformation.

9.3 Musical Symmetries

So what are the musical symmetries? There are five symmetries that can be
readily identified, and a possible sixth symmetry whose existence is not so
obvious. They can be categorised according to the sets of transformations
that define them:

e Pitch Translation: adding a certain interval to each note.
e Octave Translation: adding a multiple of an octave to a note.

e Time Scaling: playing music slower or faster.

6 Actually, components added to an asymmetrical shape can make it more symmetrical.
We can avoid this difficulty by requiring that added structure always be labelled. So if 1
have a structure consisting of 3 points of a square, which has only reflective symmetry, and
add the missing point, but with a unique label, e.g. “A”, then the new structure is a square
with one point specially labelled, and it still has only reflective symmetry.
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e Time Translation: playing music earlier or later.
e Amplitude Scaling: playing music more quietly or more loudly.

e Pitch Reflection: (this is the possible symmetry) reflecting pitch
about a particular pivot note.

For each symmetry we want to answer the following questions:

e What does the symmetry apply to? Some symmetries apply to a piece
of music as a whole; others apply to different portions of a piece of
music. Some symmetries only preserve some aspects of music.

e Does the symmetry apply to speech? It is a consequence of the musi-
cality perception hypothesis that every symmetry of music perception
must be a symmetry of speech perception.

e Does the symmetry serve a functional requirement of perception? Is
there a requirement that our perception of speech be invariant under
the transformations of the symmetry? Or does the symmetry exist
because of internal implementation details of the perceptual process?

e If the symmetry is a functional requirement, how much effort and ma-
chinery is devoted to achieving that symmetry?

o If the symmetry exists for implementation reasons, what does it achieve?

o If the symmetry is limited (and they all are to some degree), how limited
is it?

We will not be able to answer all of these questions straight away because
some of the answers will only become apparent when we investigate the nature
of cortical maps that respond to the various observable aspects of music.

9.3.1 Pitch Translation Invariance

Pitch translation is the transformation where a fixed interval is added to all
the notes in a piece of music. In musical terminology this corresponds to
transposition into a different key. However, the translation interval does
not have to be an exact number of semitones. The basic observation is that
translating a piece of music does not alter the musical quality of that music
in any significant way. This pitch translation invariance is so strong that
we do not normally regard a piece of music transposed into a different key as
being a different piece of music.

Furthermore, when we listen to music, we cannot normally tell what key
it is in. Some people do have what is known as absolute pitch. A person
with absolute pitch can identify a note that is played to them without any
context, e.g. a single piano note. However, even listeners with absolute pitch
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do not regard the musical quality of music as being different if it is played in
a different key.

Absolute pitch is sufficiently uncommon that we are amazed when some-
one demonstrates the ability to identify the pitch of musical notes. And yet
we are perhaps being amazed by the wrong thing. If we consider the point
at which musical sounds enter our nervous system, i.e. the hair cells in the
organ of Corti, the set of hair cells stimulated when a tune is played in one
key is completely different from the set of hair cells stimulated when the tune
is played in a different key. Yet by the time this information is processed
through all those processing layers in the brain that process music, the re-
sulting processed information is ezactly the same in both cases.

The sheer perfection of the computational process that achieves pitch
translation invariance suggests that there must be some important reason for
it. And it suggests there may be a significant amount of brain machinery
devoted to achieving it.

The word “translation” in “pitch translation” implies that musical inter-
vals can be combined by addition. However, musical scales are logarithmic
in nature, or to put it another way, an interval is actually a ratio between
frequencies. Pitch “translation” is really a frequency scaling, where “scaling”
refers to multiplication by a constant. But the notion of intervals being things
you add together is so predominant that I will continue to use the term “pitch
translation” to refer to the corresponding invariance.

Is pitch translation invariance a functional requirement? The answer
comes from considering speech melody. Is our perception of speech melody
pitch translation invariant? We know that different speakers speak in dif-
ferent pitch ranges. Pitch translation invariance means that these different
speakers can speak the same speech melody, by translating the speech melody
into a range that is comfortable for them.

There are limits to pitch translation invariance. If music is translated
too low or too high, we will not be able to hear it. Even before it gets
translated that far, it will start to lose its musical quality. There are limits
to the variation in pitch range that occurs in human speakers, and this would
explain why pitch translation invariance in perception of speech is limited.

Although variations in speaker pitch range explain the need for pitch
translation invariance, they don’t explain why it has to be a translation on
the log frequency scale. What we deem to be the “same” speech melody
depends on the nature of pitch translation invariance. Conceivably, some
other form of translation could have been used to define a correspondence
between speech melodies in different pitch ranges. For example, addition of
frequencies could have been used (instead of multiplication by a scale factor).
Part of the answer may have to do with the relationships between speakers
with different pitch ranges. Many of the differences between speakers depend
on difference in size: a child is smaller than an adult. In as much as the
vocal apparatus of a child is a scaled down version of an adult’s, the same
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vocal operations will result in corresponding speech melodies translated in
accordance with a scaling of frequency values by the scale factor that exists
between the sizes of the child and the adult.

But even this explanation doesn’t explain why the translation between
different pitch ranges has to be as precisely equal to a frequency scaling as
it actually is. We will discover a good explanation for this precision when
we consider the calibration theory in Chapter 12. We will also discover
that many of the mechanisms of pitch translation invariance have to do with
consonant ratios—frequency ratios that are simple fractions. These ratios are
intrinsically pitch translation invariant, so the significance of consonant ratios
explains both how pitch translation invariance is achieved, and also why it
exists as a precise frequency scaling.

Pitch translation invariance is a global symmetry: the translation must
be applied to a whole piece of music. If we translate only portions of a piece
of music, or translate only some notes, we will certainly break the tune (we
are assuming translation by an arbitrary interval-—we will see that another
form of invariance exists if the translation interval is an octave, or a multiple
thereof).

Pitch translation invariance necessarily applies to all aspects of music that
concern pitch and differences between pitch. These aspects include melody,
scales, harmony, chords, bass, home notes and home chords.

9.3.2 Octave Translation Invariance

Octave translation invariance refers to the sameness of the quality of
musical notes that differ by one or more octaves. (As is the case for pitch
translation invariance, octave translation invariance is really a scaling invari-
ance, i.e. the invariance applies when frequency is multiplied or divided by a
power of 2, but I will continue to use the terminology of “translation”.)

There appear to be two main aspects of octave translation invariance in
music:

e Musical scales repeat every octave.

e Notes within chords and in bass accompaniments can be translated up
or down by octaves, without significantly altering their musical quality
or effect. (This is the example of a local symmetry that I mentioned
above, because the transformations defining the symmetry are transla-
tions which can be applied to individual notes. Compare this to pitch
translation invariance, which is a global symmetry because the transfor-
mations defining the symmetry are translations which must be applied
to all of a musical item at once.)

The repetition of scales every octave is not just specific to Western music—
it appears in many different musical cultures. This suggests that something
quite basic—and hard-wired into the brain—is going on here.
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The statement that notes within chords and bass can be translated indi-
vidually must be subject to a caveat. As stated in the music theory of chords,
there are some constraints on where notes in a chord are usually placed, and
if you translate the notes by too many octaves then those constraints will be
broken. Also if the chords and bass line are constructed in such a way as to
create their own separate melodies, then this will constrain the notes not to
be moved from their location within those melodies.

These issues should not cause us to disregard the local nature of octave
invariance as applied to chords. If a tune is played simply, as just melody
and chords, then much of the musical quality of the tune is revealed by this
simple mode of performance. When music is played this way it is possible
to shift individual bass notes, individual chords and individual notes within
chords up or down by an octave, without having any significant affect on the
quality of the music.

One aspect of music that is definitely not octave translation invariant in
a local sense is the identity of individual notes of the melody. When a major
component of a melody is freely repeated, such as a verse or a chorus, we
may be able to translate an occurrence of such a component by an octave,
without breaking the musical effect. But if we translate individual notes up
and down by octaves, we will certainly ruin the melody. As I have already
noted, the most common note that follows any particular note in a melody is
either the same note, the note above it or the note below it. Adding random
multiples of an octave to notes breaks this pattern.

Octave translation invariance does not seem to serve any functional re-
quirement. There are no significant octave relationships within individual
speech melodies, nor between speech melodies of different speakers. When
we investigate cortical maps that represent and process information about
musical pitch and musical intervals, we will find that octave translation in-
variance enables the efficient implementation of calculations relating to the
pitch translation invariant characteristics of music and speech. In particular
it facilitates the efficient implementation of “subtraction tables” that calcu-
late the interval between two pitch values by subtracting the first value from
the second value.

9.3.3 Octave Translation and Pitch Translation

Octave translation invariance and pitch translation invariance are the only ex-
ample (from the set of musical symmetries discussed here) of a pair of weaker
and stronger symmetries, i.e. pitch translation invariance is stronger than
octave translation invariance, and the set of transformations representing oc-
tave translation is a subset of the set of transformations for pitch translation.
Pitch translation invariance means being able to add any interval to musical
notes; octave translation invariance means being able to add any interval that
is a multiple of one octave.
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This strong/weak relationship is relevant to understanding the relation-
ship between these two symmetries in the roles they play in music and speech
perception. Pitch translation invariance is a functional requirement and oc-
tave translation invariance is an implementation requirement. Any computa-
tion that starts with absolute pitch values and results in a pitch translation
invariant output will still be pitch translation invariant if the input values are
first reduced to a value modulo octaves. We will find that every aspect of mu-
sic/speech perception that is octave translation invariant will be a component
of pitch perception that is pitch translation invariant.

9.3.4 Time Scaling Invariance

If a piece of music is played faster or slower, then we can recognise it as being
the same piece of music. The quality of the music is not preserved quite as
strongly as in the case of pitch translation invariance; indeed most tunes have
a preferred tempo that maximises the effect of the music, and the music is
correspondingly weakened if we play it at a different tempo. But the fact
that we can recognise music independently of its tempo suggests that there is
some aspect of the perception of music that is preserved under time scaling.
As is the case with pitch translation invariance, achieving this invariance is
more non-trivial than we realise.

When we look at how tempo is represented in cortical maps, we will see
that neurons stimulated by a rhythm played at a fast tempo are completely
different to those neurons stimulated by the same rhythm played more slowly.
To achieve time scaling invariance, the brain has to perform a calculation such
that its final result is a pattern of neural activity in a neural map which is the
same for either the slower version or the faster version of the same rhythm.

There is a plausible functional purpose for time scaling invariance: some
people talk faster than other people, and the same person can talk at different
speeds on different occasions. There are perfectly good reasons for wanting
to talk at different speeds: sometimes it matters more to say what you have
to say as quickly as possible, other times it matters more to speak slowly so
that your audience can easily understand what you are saying. In as much
as the rhythms of the language being spoken assist in the comprehension of
language, it is important that the same rhythms can be recognised at different
tempos.

9.3.5 Time Translation Invariance

Of all the symmetries listed, this is the one that seems most trivial. If I play
a tune now, the musical quality is the same as if I play it in 5 minutes time.
It probably comes closer than any other symmetry to being exact. Even if I
play a tune in 5 years time, the musical quality will not be much different.
If T wait long enough, like 200 years, then my existing audience will all be
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dead, and therefore unable to perceive the musical quality of music. So time
translation invariance does have some limits.

Time translation invariance satisfies an obvious functional requirement:
if T use a certain speech melody now, or in 5 minutes time, it should be
perceived identically by my listeners.

Even though time translation invariance seems trivial, it is not necessarily
completely trivial to implement. If we tried to design a computer system
to perceive patterns of sound occurring in time, very likely we would use an
externally defined timing framework (i.e. a clock) to record the times at which
events occurred. In order to recognise the repeated occurrence of the same
pattern, we would have to find some way to realign our frame of reference
relative to the sets of observed events themselves.

One simple way of doing this is to define the first note of the melody as
being at time zero. But this will not produce an entirely satisfactory result.
If T add just one extra note to the beginning of the melody, all my notes will
have their times offset by the duration of that extra note. If we try to compare
notes in these different occurrences of a melody by comparing their values and
their times, then the melody with the extra note will be completely different
to the original melody, because all the notes will be labelled by different times.

This does not correspond to our own experience of melody recognition:
we do not have any difficulty recognising a melody that has had an extra note
added to the beginning.

A better theory of how time translation invariance is achieved is given
in Chapter 13, which is about repetition. The basic relationship between
repetition and time translation is that a repetition of a component of music
corresponds to a translation of the first occurrence of the component to the
time (or times) at which the component occurs again.

9.3.6 Amplitude Scaling Invariance

This invariance seems almost as trivial as time translation invariance.” If we
turn the volume up or down, it is still the same music. There are limits,
but these correspond to obvious extremes. If we turn the volume down too
far then we can’t hear anything; if we turn it up too much then the per-
ceived sound becomes distorted (and eventually physical damage occurs to
the sensory cells in the ear).

Amplitude scaling invariance satisfies an obvious functional requirement
in speech perception: some people talk more loudly than others. Also if
someone is farther away, then they are going to sound quieter, but it’s still
the same speech.

It is not, however, necessarily trivial to implement. Within the organ of Corti, a louder
sound activates a larger population of hair cells. Non-trivial computation is therefore
required (within the auditory cortex) to recognise similarity between louder and softer
versions of the same sound.
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Amplitude scaling does not affect our perception of the quality of music,
but it does affect our enjoyment of music. If we like a particular item of music,
then we like it turned up louder, and we experience that the emotional effect
is more intense if it is played more loudly. A significant portion of the money
spent by consumers (and performers) on music is spent on equipment whose
sole purpose is to make the music louder. One of the consequences of the
correlation between loudness and musical enjoyment is that deafness caused
by music being too loud is the major health risk associated with listening to
music.

9.3.7 Pitch Reflection Invariance

This is the most obscure musical symmetry; in fact I am not completely
certain that it exists. But its existence is plausible. The diatonic scale has a
reflective symmetry. If we consider the white notes, it can be reflected in the
note D. This symmetry can also be seen in the Harmonic Heptagon. It is not
the symmetry of this scale that makes the case for pitch reflection invariance;
rather it is that, given the symmetry of the scale, a certain property of the
scale is also invariant under reflection. This property is the home chord. In
fact the home chord of tunes played in the white notes scale is always either
C major or A minor.®

C major and A minor are reflections of each other around the point of
symmetry D. When we look at home chords in detail, we will consider what
forces exist (in our perception of music) that cause the home chord to be one
or the other of these two chords. It seems at least possible that these forces
involve interactions between notes separated by consonant intervals, and that
the force from note X to note Y is the same as the force from note Y to note
X. It is this symmetry of forces between notes that gives rise to the symmetry
between C major and A minor as home chords, given the symmetry of the
scale itself.

If pitch reflection invariance is a genuine musical symmetry, then it comes
into the category of implementation symmetries. The home chord does not
appear to directly represent any information about speech as such; rather
it is the result of a process that attempts to define a frame of reference for
categorising the notes (or frequencies) in a melody in a way that is pitch
translation invariant. It is also a broken symmetry (in the same sense this
term is used in physics), because one of the two possible home chords must
be chosen for each particular tune.

8Musical theory does allow for other home chords, but if you survey modern popular
music it’s almost always one of these two chords.
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9.4 Invariant Characterisations

A major question to be asked about functional symmetries in perception is:
how is each invariant perception represented in the brain?

It is useful to consider the same problem stated for a simple mathematical
example. We can compare idealised solutions to this type of problem to the
more pragmatic solutions that the brain might actually use.

Consider the set of finite sequences of numbers. An example might be (3,
5,6,—7,4.5). We will allow our numbers to be negative or positive (or zero)
and to have fractional components. A natural definition of equality for this
set is to define two sequences to be equal if they have the same number of
elements and if the corresponding elements in each position are equal. So
(4,5,6) is equal to (4,5,6), but it is not equal to (4,5) because (4,5) has only
two elements, and it is not equal to (4,7,6), because the elements in at least
one position (i.e. the second) are not equal. And it is not equal to (4,6,5),
because order matters.

Next we want to define a symmetry represented by a set of transforma-
tions. The set of transformations consists of all those transformations that
add a constant value ¢ to each element of a sequence, where c¢ is any number.

Then we define what is called a quotient set. Elements of the original
set are elements of the quotient set, but they have a different rule of equality:
elements of the quotient set X and Y are considered equal if there exists a
transformation (from the set of transformations defining the symmetry) that
transforms X into Y, i.e. if there exists some number ¢ which can be added
to each element of X to give Y. This relationship between elements that we
want to consider equal is called an equivalence relation® on the original
set.

To give an example, consider two sequences X and Y, where X =(4,5,—6)
and Y =(5.5,6.5,—4.5). X is equivalent to Y because we can transform X into
Y by adding 1.5 to each element of X. But X =(4,5,—6) is not equivalent to
7Z =(5,6,—9), because there is no number that we can add to all the elements
of X to get Z: we would have to add 1 to the first two elements but —3 to
the last element.

This mathematical model could be considered a simplified model of pitch
translation invariance as it applies to music—considering notes of a melody
to be a simple sequence of values, and ignoring considerations of tempo and
rhythm. The numbers in the sequence correspond to pitch values (e.g. as
positions in a semitone point space), and the equality of a sequence to a
translation of that sequence by a fixed value corresponds to the musical iden-
tity of a tune to a version of itself transposed into a different key.

The important question is: how can we represent distinct members of the
quotient set? If we represent (4,5,—6) as (4,5,—6) and (5.5,6.5,—4.5) as (5.5,

91In general an equivalence relationship must have the following properties: = = x (re-
flexive property), x = y implies y = z (symmetric property), z = y and y = z implies
z = z (transitive property).
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6.5,—4.5), then we are using different representations for what are meant to
be the same elements.

This is not necessarily a bad thing, but it complicates the definition of
operations on the quotient set. If a formula specifies a calculation applied
to a non-unique representation, then we have to verify that the calculation
applied to different representatives of the same element always gives the same
result.

Mathematicians have struggled with the issue of how to define unique
representations for elements of a quotient set. One neat but somewhat tricky
approach is to identify each element of the quotient set with the equivalence
class of members of the original set that correspond to it. So the represen-
tative of the element (4,5,—6) is the set of elements of the set of sequences
which are equivalent to (4,5,—6). This is a neat trick, because the equiva-
lence class of (4,5,—6) contains the same members as the equivalence class of
(5.5,6.5,—4.5), and sets are equal if they have the same members. But there
is no easy way to write this equivalence class down, because it contains an
infinite number of elements. (We could just write “the equivalence class of
(4,5,—6)” and “the equivalence class of (5.5,6.5,—4.5)”, but this gets us back
to where we started, because we will have different ways of writing the same
equivalence class.)

There is another way out of this quandary. It doesn’t work for all examples
of quotient sets, but it works fine for the one we are considering. What
we need to do is find a well-defined procedure for choosing a canonical
representative for each equivalence class of the original set. This canonical
representative will be the representative of each equivalence class. As long
as the members of the original set can be written down somehow, then the
canonical representatives can be written down, and we have unique written
representatives for elements of our quotient set.

In the example we are considering, there are various rules we could use
to choose the canonical representative for each equivalence class. One is to
choose the representative whose first element is 0. So the canonical represen-
tative of (4,5,—6) would be (0,1,—10). Another possibility is to choose the
representative such that the total of the elements in the sequence is 0. The
representative of (4,5,—6) would then be (3,4,—7).

Canonical representatives are not the only means of defining unique repre-
sentatives for equivalence classes. In our current example, we could represent
each sequence by the sequence of differences between consecutive elements
in the sequence. So the representation of (4,5,—6) would be (1,—11). The
sequence of differences always has one less element than the original sequence,
so it is not a member of the equivalence class. The sequence of differences
represents the equivalence class because:

e if we add a constant value to the sequence then this doesn’t affect the
differences, and,
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e if two sequences have the same sequence of differences, then there must
be a constant difference between all their corresponding elements.

There is a certain aesthetic to this representation: it doesn’t involve try-
ing to choose a special representative of the equivalence class; instead we just
perform some operation whose result is unaffected by the transformations
defining the equivalence relationship. And the operation preserves enough
information about its input value to retain the distinction between different
equivalence classes. Further on we discuss what happens if not enough infor-
mation is preserved by the operation that generates the representation—in
that case we are left with an incomplete representation, i.e. one that gives
the same representative for all members of an equivalence class, but which
does not always distinguish different equivalence classes.

9.4.1 Application to Biology

This theory of equivalence relationships and quotient sets is a gross simpli-
fication of the concept of symmetries in biological perception. Elements of
a quotient set are either equal to each other or they are not. But biologi-
cal perception also has requirements of similarity. To give a basic example,
we don’t consider two melodies completely different if they only vary by one
note.

This requirement affects what constitutes a plausible theory about the
representations of perceptions invariant under some symmetry. In particular,
if two objects are perceived as similar, then the internal representations of
the perceptions of those objects should be correspondingly similar.

We can attempt to apply this to our current example of sequences as a
model of pitch translation invariant perception of melody.

We could consider the first example of a representation of a melody that
is invariant under a constant pitch translation, where we choose a representa-
tive such that the first element (i.e. note) of the sequence is 0. For example,
the sequences (2,1,4,3,1,1,1,2,3) and (3,2,5,4,2,2,2,3,4) belong to the equiva-
lence class whose canonical representative is (0,—1,2,1,—1,—1,—1,0,1). What
happens if we add an extra note to the beginning of the sequence? If the
extra note is not the same as the original first note, then all corresponding
elements of the canonical representative will be different. For example, we
might add 1 to the start of (2,1,4,3,1,1,1,2,3) and 2 to the start of (3,2,5,4,
2,2,2,3 4) to give (1,2,1,4,3,1,1,1,2,3) and (2,3,2,5,4,2,2,2,3,4), and the canon-
ical representative becomes (0,1,0,3,2,0,0,0,1,2). The similarity between the
representatives (0,—1,2,1,—1,—1,—1,0,1) and (0,1,0,3,2,0,0,0,1,2) is obscured
by the fact that the elements of the latter have been translated 1 up from
their values in the former.

But our common experience is that we can easily recognise the similarity
between a melody and the same melody with an extra initial note added to
the start.
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If we consider the representation where the total value of notes in the
sequence is zero, which is the same as saying that the average value is zero,
then adding an extra note will change all the components of the representa-
tive, but only by a small amount. For example, the sequence (2,1,4,3,1,1,1,2,
3) has an average value of 2, so its representative is (0,—1,2,1,—1,—1,—1,0,1).
If we add 1 to the start, i.e. (1,2,1,4,3,1,1,1,2,3), the average value is now 1.9,
so the representative becomes (—0.9,0.1,—0.9,2.1,1.1,—0.9,—0.9,—0.9,0.1,1.1).
The old representative and the “tail” of the new representative (i.e. all those
elements after the additional first element) are different, but only by 0.1.

The representation as a sequence of differences seems more promising:
if we add an extra note to the start of a tune, the representative will be
changed by the addition of one difference to the beginning. For example, the
representative of (2,1,4,3,1,1,1,2,3) and (3,2,5,4,2,2,2,3.4) is (—1,3,—1,—2,0,0,
1,1). Adding 1 and 2 (respectively) to the start of these sequences results in
a representative (1,—1,3,—1,—2,0,0,1,1). The old representative and the tail
of the new representative are now identical.

We can characterise these different representations in terms of how they
are affected by a change at a certain point in a sequence being represented,
and in particular by how soon a representation “forgets” the effect of a change
that occurs at the beginning of the input sequence. The representation with
the first element set to zero never forgets the effect of a change at the start
of a sequence. The representation with the average (or total) set to zero
also never forgets, but the effect of the change is diluted in proportion to the
overall length of the sequence. The differences representation, on the other
hand, forgets the effect of a change almost straight away.

There are, however, other types of change to a sequence that affect the
differences representation in ways that are inconsistent with our experience
of how we perceive melodies and changes to them:

e If one note in the middle of the tune is changed, two consecutive differ-
ences will change in the representative. For example, changing (2,1,4,
3,1,1,1,2,3) to (2,1,4,3,2,1,1,2,3) changes the representative from (—1,3,
-1,-2,0,0,1,1) to (-1,3,-1,—1,—1,0,1,1).

e If all the notes past a certain point are increased by a constant value
(like a sudden change of key), one difference will change. Changing (2,1,
4,3.1,1,1,2,3) to (2,1,4,3,2,2,2,3,4) changes the representative from (—1,
3,—1,—2,0,0,1,1) to (—1,3,—1,—1,0,0,0,1,1).

For each of these two changes, the corresponding change to the differences
representative consists of a change to a small number of values in one part
of the differences sequence, but subjectively we experience these changes dif-
ferently: a changed note is a changed note, but a change in key feels like a
permanent change to the state of the melody, and the effect of this change in
state is felt until our perception of the melody “settles in” to the new key.
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So even the sequence-of-differences representation does not fully match
up with our subjective experience of pitch translation invariant perception of
melody. In some sense it is too forgetful, and the other representations we
considered are not forgetful enough. But consideration of these possibilities
has given us a flavour of what we want to look for when considering how the
brain represents musical information.

9.4.2 Frames of Reference

Attempting to find a canonical representative for a tune can be described as
trying to find a “frame of reference”, to use a term from physics. A physicist
analysing the motion of an object moving at a constant velocity through space
will try to choose a frame of reference that simplifies the analysis, for example
one where the object is not moving at all.

Setting the first note to zero and setting the average note value to zero
can be seen as simple strategies for finding this frame of reference. Now the
musical aspects of scales and home chords do seem to act like a frame of
reference. Given that all the notes from the melody are from a certain scale,
and given that the scale has an uneven structure (although repeated every
octave), it is possible to identify certain notes in the scale as being “special”,
and use those notes to define the frame of reference for choosing a canonical
representative of the melody. For example, for a tune played entirely on a
diatonic scale, we would transpose it until it was in the key of C major, and
that would be our canonical representative.

There is only one thing seriously wrong with this theory of scales and
home notes as choosing a frame of reference: there are no identifiable scales
or home chords in speech melody, and the super-stimulus theory implies that
the biological purpose of pitch translation invariant melodic representations
is to represent speech melody, not musical melody. So, for example, it would
not make any sense to specify that the canonical representative of a speech
melody could be determined by transposing it into the key of C major.

Having said that, we will find that the purpose of those cortical maps that
respond to scales and home chords is to provide representations of melody
that are pitch translation invariant, and these maps provide invariant repre-
sentations for both speech melody and musical melody.

9.4.3 Complete and Incomplete Representations

If we asked a mathematician to find a representation for members of a quo-
tient set, they would look for a representation that loses the distinction be-
tween members of an equivalence class, but which does not lose any other
distinctions, i.e. between members of different equivalence classes.

But biological pragmatism often finds solutions to problems that may not
offer mathematical perfection. Losing exactly the right amount of distinction
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is like sitting exactly on a very fine line. Perhaps in real life we sit on one
side or the other of the line, or even straddle it in some way.

We do know that the pitch translation invariance of melody perception
is close to perfect for moderate translations, so we can be sure that the
distinction between elements within an equivalence class is definitely lost.
But it is possible that the brain uses representations that are incomplete, in
the sense that they do not completely represent all the information about an
equivalence class of melodies (because they have lost more information than
would be lost by a complete representation).

One consequence of incompleteness is that there would exist distinct
melodies having the same representation, and therefore perceived as being
the same melody. This might seem strange, given that many people can eas-
ily learn to reproduce a melody fairly exactly (if they can sing in tune), but
we must remember that a musical melody is a discrete thing, compared to a
speech melody which is continuous, and the set of discrete musical melodies
is a much smaller set than the set of melodies in general. So we may be
able to reliably distinguish different musical melodies, but not necessarily be
able to distinguish different non-musical melodies, even where there might be
a significant difference that we would spot if we happened to view a visual
representation of the melody as a function of frequency against time. It is
also possible that the brain uses multiple incomplete representations, which,
when taken together, form a fairly complete representation of a member of
the quotient set. More research may need to be done on the brain’s ability
to identify and distinguish non-musical melodies.

Recall the representation of a sequence of notes as a sequence of differences
(i.e. intervals). This can be defined in terms of the operation of calculating
the differences between consecutive note values. There are many other cal-
culations that we could define to act on the original note information. Some
of these will produce results that are pitch translation invariant, and some
of those pitch translation invariant representations will be incomplete. Some
examples of incomplete pitch translation invariant representations include the
following:

e Whether or not each note is greater than, less than or equal to the
previous note. So, for example, (2,1,4,3,1,1,1,2,3) and (3,2,5,4,2,2,2,3,
4) would be represented by (<,>,<,<,=,=,>,>). The representation is
incomplete in the sense that there are sequences which have the same
representative but are not equivalent to each other. For instance (2,0,5,
2,0,0,0,3,4) has the same representative as the first two sequences, even
though it is not equivalent to them.

e For each note, the number of steps since the last note (if any) that
was harmonically related to the current note (but not the same). For
example, supposing that intervals of 3 or 4 semitones are harmonic and
intervals of 1 or 2 semitones are not harmonic, the representative of
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(2,1,4,3,1,1,1,2,3) and (3,2,5,4,2,2,2,3,4) is (?,7,1,7,2,3,4,7,7), where “?”
means no other note harmonically related to that note has previously
occurred.

e For each note, the number of times the same note has occurred pre-
viously. The representative of (2,1,4,3,1,1,1,2,3) and (3,2,5,4,2,2,2,3 4)
would be (0,0,0,0,1,2,3,1,1).

e For each note, the number of times a note harmonically related to that
note has occurred previously. Again, for the same example, the repre-
sentative would be (0,0,1,0,1,1,1,0,0).

It is not too hard to see that each of these functions defines a result that is
pitch translation invariant. None of these four functions is a complete repre-
sentation, because for each function there are distinct melodies not related to
each other by pitch translation for which the function gives the same result.

We could define a number of incomplete representations invariant under
some symmetry, and then combine them into a complete (or almost complete)
representation. But why bother? Why not just calculate a single simple
complete representation?

A possible answer to this question has to do with the biological pragma-
tism that I mentioned earlier. It may not matter that a representation is
perfectly complete. And the cost to calculate a perfectly complete represen-
tation may be exorbitant. We must also consider the constraints of evolution:
a simple calculation of a complete representation may be feasible, but there
may be no way that it could have evolved from less complete (and less invari-
ant) representations.!”

I will adopt the terminology of invariant characterisations of musi-
cal structures, preferring “characterisation” over “representation”, because
“characterisation” is a term that emphasises both the biological purpose of
such representations and their potential incompleteness.

10This is similar to the explanation of why there are no wheels in nature: there is no
way that something which is not a wheel could have evolved continuously and gradually
into something that is a wheel, while all the time being useful to its owner.
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