
Chapter 7

2D/3D Theory of Music

This chapter describes my older 2D/3D theory of music, which
was formulated in response to observations about the vector repre-
sentations of musical intervals and the various mappings between
them.

Firstly we look at some more vector and point space mappings: a
2D to 1D vector mapping which maps both tones and semitones to
“steps”, and the visual 3D to 2D point space mapping which maps
the 3D world to 2D (retinal) images. Then I discuss the major
concept in the 2D/3D theory, which is the suggestive analogy
between the musical 3D to 2D mapping and the visual 3D to 2D
mapping.

7.1 More Vector Space Mappings

7.1.1 Another Mapping from 2D to 1D

We’ve looked at the “natural” mapping from 2 dimensions to 1 dimension,
i.e. the one that maps tones and semitones to semitones. But there is another
mapping from the 2-dimensional space to a 1-dimensional space that could be
considered relevant to understanding music perception. This is the mapping
that maps both a tone and a semitone to a step. The “step” represents a step
on the diatonic scale that one takes as one goes from one note to the next
note on the scale. We cannot consider the target space of this mapping to be
the same as the 1-dimensional semitone space, so perhaps we can call it the 1-
dimensional step space. This mapping “forgets” the difference between a
tone and a semitone, in the sense that looking at an output vector consisting
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of n steps, we cannot tell which of those n steps in the input vector were
semitones and which were tones. It is represented by the following matrix:

(

1
1

)

So why might this mapping be important for understanding music per-
ception? There are many tunes where a first phrase consists of some sequence
of notes played in a certain rhythm, and then a second phrase consists of the
same sequence of notes transposed along the diatonic scale, played in the same
rhythm. This transposition is different from the normal sort of transposition,
which refers to an exact translation such as when a key change occurs. The
exact pattern of intervals in the second phrase will be different from that in
the first phrase, because some tones will change to semitones, and vice versa.
To give a simple example, the first phrase might be CDEDEE, and the second
phrase could be DEFEFF, which is transposed one “step” up the scale.

But if we apply the forgetful 2D to 1D mapping that we have just de-
scribed, then the mapped version of the second phrase is an exact translation
of the mapped version of the first phrase.

This seems a promising notion. But if it really forms an aspect of music
perception, there would have to be some cortical map that performs this
mapping. If we assume that the cortical maps that process music already
exist to serve some other purpose, then it is unlikely that such a cortical map
exists, because there is no other reason why the brain would want to process
information about musical intervals in this way; in particular scales do not
occur outside music, and speech melodies do not have a structure which can
be factored into independent dimensions of tone and semitone. In Chapter 10,
the melodic contour cortical map is introduced. This map ignores the
difference between tones and semitones in many cases, not because there is a
2D to 1D mapping, but rather because it processes pitch information with a
reduced level of precision.

7.1.2 Another Perceptual 3D to 2D Mapping

The world we live in is 3-dimensional. We make representations of parts of the
world in pictures and photographs which are 2-dimensional. The images on
the retinas of our eyes are 2-dimensional, and our brain reconstructs a model
of the 3-dimensional world from the information in these two 2-dimensional
images. The correspondence between a 3D scene and its 2D picture can
be described as a mapping from a 3D point space to a 2D point space. By
considering vectors defined by pairs of points in the 3D and 2D spaces, we can
define a corresponding mapping from a 3D vector space to a 2D vector space.
As already mentioned in Chapter 5, a mapping between point spaces that
defines a corresponding well-defined linear mapping between vector spaces
is called an affine mapping. The mapping between a 3D scene and a 2D
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picture is not an affine mapping. This has to do with the fact that things
far away are smaller on the picture than things that are close. The technical
name for such a mapping is a projective mapping.

However, if we consider a very small portion of the 3D scene (“small”
in the sense of being a small volume of limited diameter), which is a large
distance from the point of view that defines the picture (“large” compared
to the size of the “small” portion), then the mapping is approximately affine,
and there is a corresponding approximately linear mapping of displacement
vectors.1

Furthermore, the human brain necessarily has an ability to process the
correspondence between 3D scenes and 2D pictures of those scenes. This
ability underlies our ability to perceive 3D from the 2D information provided
by our retinas.

The first assumption of the 2D/3D theory of music is that there is a
significant analogy between the two different 3D to 2D mappings:

• the musical 3D to 2D natural mapping which maps from the 3D rep-
resentation of musical intervals to the 2D tone/semitone representation
of musical intervals, and,

• the visual 3D to 2D natural mapping which maps from arbitrarily small
displacement vectors in an arbitrarily small portion of a 3D scene to
their images in a 2D picture (with the point of view not too close to
said portion).

Translated into the language of neurons and cortical maps, this analogy
suggests two possible hypotheses about the relationship between the two types
of 3D/2D mapping:

1. There is a cortical map somewhere in the brain that processes the re-
lationship between 2D and 3D in the brain, and this cortical map also
processes the relationship between 2D and 3D in music, or,

2. there is a set of neurons somewhere in the brain with an intrinsic ability
to process 2D/3D relationships. Most of them are recruited to process
the relationship between 3D objects and 2D images, but some of them
get recruited to the task of processing 2D/3D relationships in music.

The problem with the first hypothesis is that we would then expect listen-
ing to music to feel like visual perception of the real 3-dimensional world. We
would expect this because that is the generally observed fact about cortical

1If a point space mapping is not affine, not only will the corresponding vector map-
ping not be linear, it won’t even be well-defined (the mapped value of a vector will vary
depending on which two points are used to define it). But if we assume that the point
space mapping over a small enough portion of the point space is sufficiently close to affine,
then the corresponding vector space mapping will be correspondingly close enough to being
well-defined.
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maps: two different experiences or perceptions or emotions feel the same if
and only if the same neurons are active in both cases.

The second hypothesis is an attempted work-around to this problem, i.e.,
the same sort of neurons process visual 2D/3D and musical 2D/3D, but there
is no actual overlap in which neurons are active in each case, and that is why
music does not feel like visual perception of 3D space.

As stated so far, the 2D/3D theory provides an explanation for the dia-
tonic scale, and it explains the relevance of harmonic relationships between
notes in the scale, but it does not explain any other features of music.

7.2 The Looping Theory

The second assumption of the 2D/3D theory is based on two observations:

1. Music tends to go around in circles. Tunes start on a home note and
a home chord (prototypically the note C and the chord C major which
consists of the notes C, E and G), travel a path visiting other notes and
chords, and finally return to the home note and the home chord.

2. The Harmonic Heptagon (see end of Chapter 5) defines a cyclic path
around the diatonic scale.

So maybe the 3D representation of notes, as defined by the 3D repre-
sentation of the intervals between different notes, travels once around the
Harmonic Heptagon as it travels from the initial home note and chord to the
final home note and chord. This implies that the final home note is displaced
from the initial home note by the 3D vector (−4, 4,−1) which represents the
syntonic comma of 81/80 (or by (4,−4, 1) representing 80/81, depending on
which way we go around the loop). In 3 dimensions the tune travels along
something like a spiral, and the 2-dimensional picture is seen from a point of
view such that the spiral looks like a closed circle. To close the gap corre-
sponding to the syntonic comma, the point of view has to be one such that
points separated by a multiple of the (−4, 4,−1) vector are in the same line
of sight, and thus occupy the same position in the 2D image.

The looping theory adds some extra constraint into the 2D/3D theory.
Furthermore, we can relate common chord sequences to a trip around the
Harmonic Heptagon. For example, a common chord sequence is C major,
F major, G7, C major. To make the theory work there has to be some method
of determining where each chord would be placed on the Harmonic Heptagon
relative to previous chords that have already occurred in the tune. The tune
starts with C major (CEG). Next is F major (FAC). It seems reasonable to
regard the F major as being connected to the C major via the shared note C.
Moving on to G7 (GBDF), it seems reasonable again to connect it to F major
by the shared note F. And then the G7 will be connected to the final C major
by the shared note G, which completes a full circle going clockwise around
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the heptagon. In 3D space, the final C major chord is located in a position
displaced from the initial C major chord by the vector (4,−4, 1).

7.3 Outlook for the 2D/3D Theory

Unfortunately my development of the 2D/3D theory has not made any fur-
ther progress. And I have now developed the newer super-stimulus theory,
which has a much better foundation in biological theory, and is able to ex-
plain many aspects of music in plausible and convincing detail. But given
uncertainty about some parts of the super-stimulus theory, and the incom-
pleteness of that theory, I can’t rule out the possibility that the older 2D/3D
theory has some relevance to a final and complete explanation of music.

The concept of the Harmonic Heptagon does turn out to be important
for developing certain aspects of the super-stimulus theory, in particular the
theory of home notes and home chords. And the 1D/2D/3D vector theory
of intervals gives a complete picture of all the relationships between intervals
described as tones plus semitones and intervals described in terms of simple
fractional ratios (if those ratios are considered not to have any prime factors
in the numerators and denominators other than 2, 3 and 5). So the analysis
of intervals as vectors was a useful analysis to do, even if the full 2D/3D
theory turns out to be incorrect.

I will finish this section with a list of unresolved issues around the 2D/3D
theory:

• The analysis of chordal movement around the heptagon doesn’t say
anything about melody. We have to find a way to relate the notes of
the melody to the notes of the harmony within the framework of the
theory.

• One can attempt to place or locate notes of the melody in 3D space
in the same sort of way that I described chords being located. This
requires us to define rules as to which harmonic intervals between which
notes are to be used to locate notes relative to each other. The desired
result is that the final home note is located at a position in 3D space
displaced from the position of the initial home note by the syntonic
comma. Presumably the displacement calculated by calculating the
locations of notes in the melody should be consistent with the rules for
calculating the locations of chords, particularly if the chords are implied
by the melody.

• Consecutive chords do not always share notes, so shared notes cannot
always be used as a basis for determining where to locate chords relative
to each other in 3D space. They can also share more than one note, in
some cases giving rise to two different choices of relative location.

135



2D/3D Theory of Music

• The theory doesn’t say much about time and rhythm. The best it
can do is suppose that the times that notes occur play a role in the
rules that determine which relationships between which pairs of notes
determine relative locations in 3D space. A bigger difficulty is that there
is some degree of musicality in music that consists only of rhythmical
percussion—something that a theory based on frequency ratios cannot
possibly explain. (The super-stimulus theory does better here, as it can
explain the musicality of music that has no melody or harmony at all.)

• The 2D/3D theory depends too much on specific features of the well-
tempered diatonic scale, in particular that the steps are all one of two
sizes.

• The theory assumes that ratios involving 7 (or higher prime numbers)
are musically unimportant. For example, adding 7 would increase the
number of dimensions from 3 to 4. This is less of an issue with the
super-stimulus theory. The construction of the Harmonic Heptagon
is based on powers of 2, 3 and 5; and the super-stimulus theory does
make use of the Harmonic Heptagon to analyse some aspects of Western
diatonic music. But the super-stimulus theory does not depend on the
existence of this heptagon to explain all music—it only makes use of
the heptagon to explain relevant properties of music based on the scale
that the Harmonic Heptagon is constructed from.

• As already mentioned in the introduction, the 2D/3D theory is anal-
ogous to the paradoxical drawings of M.C. Escher, which exploit the
ambiguity in 3D space of the location of points represented on a 2D im-
age. But looking at an Escher drawing does not “feel like” listening to
music, whereas one might expect it to do so if the same paradox applied
to perceptions processed by the same cortical maps in each case.
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